E-mail Spam Filtering with Local Svm Classifiers
نویسندگان
چکیده
This paper describes an e-mail spam filter based on local SVM, namely on the SVM classifier trained only on a neighborhood of the message to be classified, and not on the whole training data available. Two problems are stated and solved. First, the selection of the right size of neighborhood is shown to be critical; our solution is based on the estimation of the a-posteriori probability of the correct decision, and the resulting algorithm is called highest probability SVM nearest neighbor (HP-SVM-NN). The second problem is the application of the algorithm in practice, and we propose a practical filter architecture based on HP-SVM-NN. Extensive testing is performed on SpamAssassin corpus and TREC 2005 Spam Track corpus, showing that HP-SVM-NN outperforms pure SVM and is applicable in practice. Finally, we explore the locality properties of the two corpora using Sammon’s projection.
منابع مشابه
Support Vector Machines Parameter Selection Based on Combined Taguchi Method and Staelin Method for E-mail Spam Filtering
Support vector machines (SVM) are a powerful tool for building good spam filtering models. However, the performance of the model depends on parameter selection. Parameter selection of SVM will affect classification performance seriously during training process. In this study, we use combined Taguchi method and Staelin method to optimize the SVM-based E-mail Spam Filtering model and promote spam...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملSurvey on Text Classification (Spam) Using Machine Learning
E-mail spam is a very serious problem in today’s life. It has many conséquences like it causes lower productivity, occupy space in mail boxes, extend viruses, Trojans, and materials containing potentially harmful information for a certain category of users, Destroy stability of mail servers, and as a result users spend a lot of time for sorting incoming mail and deleting undesirable corresponde...
متن کاملSearching for Interacting Features for Spam Filtering
In this paper, we propose a novel feature selection method— INTERACT to select relevant words of emails for spam email filtering, i.e. classifying an email as spam or legitimate. Four traditional feature selection methods in text categorization domain, Information Gain, Gain Ratio, Chi Squared, and ReliefF, are also used for performance comparison. Three classifiers, Support Vector Machine (SVM...
متن کاملE-mail Spam Filtering Based on Support Vector Machines with Taguchi Method for Parameter Selection
Support Vector Machines (SVM) is a powerful classification technique in data mining and has been successfully applied to many real-world applications. Parameter selection of SVM will affect classification performance much during training process. However, parameter selection of SVM is usually identified by experience or grid search (GS). In this study, we use Taguchi method to make optimal appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008